Lampasas River Watershed Partnership Bacterial Source Tracking

Elizabeth Casarez, Ph.D.

Post-doctoral Research Associate George Di Giovanni, Ph.D. Professor and Faculty Fellow, Environmental Microbiology Department of Plant Pathology and Microbiology **Texas AgriLife Research Center at El Paso Texas A&M University System**

Elevated Levels of *E. coli* in the Lampasas River

E. coli used as an **INDICATOR** of fecal pollution and health risk

- Higher levels of *E. coli* = Higher probability of health risks

Enteric pathogens are the bad guys

Clean Water Act Restore and maintain beneficial uses of water bodies Standards for Contact Recreation

There's *E. coli* in the Water, <u>But Where Did it Come From?</u>

Target Best Management Practices Implementation Bacterial Source Tracking (BST) as a tool

Track fecal pollution sources using *E. coli* Different animal guts → Different adaptations → Different *E. coli* strains → Phenotypic Differences Genetic Differences

Nature of the Beast

Bacterial Source Tracking

- BST laboratory tests to find differences in DNA sequence (strains)
 - Correlate differences with specific source host
 Determine if *E. coli* in water samples came from animal or human feces
- Most BST methods are Library Dependent
 - Need database of reference bacteria from known animal and human sources
- "Local" watershed libraries currently considered most useful
 - Cost and time considerations

TSSWCB Assessment of Lake Waco and Belton Lake (N. Bosque)

- One of the first BST studies in the state (~ 2003)
- >3700 E. coli from 765 fecal and 415 water samples
- Compared 4 different BST methods
 - ERIC-PCR, RiboPrinting, PFGE, KB-ARA
- Results: Wildlife was major source, followed by cattle and humans
- Lessons learned
 - Identified pollution sources may differ from assumed sources assumed was dairy cattle
 - 2-method composite for good results
 - Cross identification between livestock
 - Cosmopolitan isolates can confound results
 - Big libraries are expensive
- Will results for Lampasas be similar?
 - Cannot predict
 - Geographically similar, but temporally different

Texas E. coli BST Library

Self –validated isolates from 7 Texas watersheds 1309 isolates from 1185 source samples

Thousands of *E. coli* isolates screened from Lake Waco; Belton Lake; San Antonio River; Lake Granbury; Buck Creek; Upper Trinity River; Upper Oyster Creek

Table I. Texas E. coli BST libra	ary (ver. 8-10) compo	sition and rates of o	correct classification	
Source Class (number of isolates/samples)	Library Composition and Expected Random Rate of Correct Classification	Calculated Rate of Correct Classification	Left Unidentified (unique patterns)	
Human (374/327)	29%	89%	19%	
Livestock and Pets (462/424)	35%	83%	20%	
Wildlife (473/434)	36%	86%	18%	

Statewide library works about as well as a small local library but still room for improvement —supplement with local known sources

50 local known source samples needed

Different individual animals*; swab or fresh excretion 5 isolates/sample archived; 3 isolates/sample screened self-validated isolates will be incorporated into State library

- Identify potential sources
- What are sources of special concern?
- Can we access these sources?
 - Landowner permission
 - Collection permission
 - Wildlife collections
- Challenge and expand current state library

Bacterial Source Tracking (BST) Studies

Data Analysis Best Match Approach

ERIC-PCR

Enterobacterial Repetitive Intergenic Consensus sequence--Polymerase Chain Reaction

Best ERIC-PCR Match

Similarity: 95.82% (weight 256)

Pearson correlation (Opt:1.56%) [0.0%-100.0%]

HindIII Automated Ribotyping Best RiboPrint Match

Data Analysis: Best Match Approach <u>Composite Data Sets</u>

- Applied Maths Bionumerics Software

 Generate a family tree based on
 - Generate a family tree based on similarity
- "Best Match" approach with minimum similarity cutoff based on laboratory QC data
 - Water isolate must match library isolate ≥ minimum similarity or unidentified
 - Identification to *single library isolate* with highest similarity – max similarity approach

80% similarity or BUST!

Three-way vs. Six-way split of Results

• Using the results

- Is it from human sources?
- Is it from livestock?
- Is it from wildlife?

Biology

- Cross identification between livestock
- Large variety of wildlife
- Cosmopolitan strains
- Geographical and temporal differences
- Statistics
 - Number of isolates collected

1. Human

- 2. Livestock and Pets
- 3. Wildlife

VS.

Human 1.

Pets 2.

Cattle 3.

Other livestock, avian 4. Other livestock, non-avian 5. Wildlife, avian & non-avian 6.

Example of *E. coli* BST Results

- Matches or "hits" for *E. coli* split into 3 categories
 - ie., Human, Livestock and Pets, Wildlife
- Some *E. coli* cannot be identified
 - If < 80% similarity, classified as "Unidentified"
 - Particular strain fingerprint not in library
- Estimate of pollution source contribution
- Provides rank order
 - Not absolute percentages: $\sim 30\% = \sim 40\%$

Interpretation of Results

- Local known source isolates will be compared to Texas *E. coli* BST Library
 self-validated isolates will be incorporated
- 5 *E. coli* isolates from each water sample monthly over 12 months for 15 sites
 5 * 12 = 60 isolates per site
- 3-way split of source classes per site
 - May be able to use 6-way split for entire watershed as a whole
- Along with BST data, incorporate:
 - E. coli counts data
 - Comparisons between water stations and over time
 - Knowledge of local area
 - Modeling
 - Common Sense

to interpret results for recommendations for Best Management Practices

Acknowledgments

Texas AgriLife Research El Paso Microbiology Lab Joy Truesdale, Karina Barrella

Collaborators

Texas AgriLife Research— Blackland Research & Extension Center at Temple Texas AgriLife Research – Texas Water Resources Institute

Funding

Texas State Soil and Water Conservation Board (TSSWCB)

BST Technique 1 ERIC-PCR Fingerprinting

- Enterobacterial repetitive intergenic consensus sequence polymerase chain reaction (ERIC-PCR)
- Method of generating a "DNA Fingerprint" for each *E. coli* isolate
- Different strains of *E. coli* have different fingerprints

BST Technique 2 <u>HindIII Automated Ribotyping</u>

 Another DNA Fingerprinting Test

Also Confirms Isolates as *E. coli*

Photos by G.

Giovann

	Sample	Label	RiboGroup	Similarity to Selected	RiboPrint ® Pattern			
	Number			295-21-S-1	1 kbp	5	10 15 50	2
	295-21-S-1	QC 101	HindIII 295-21-S-1	1.00				
	295-21-S-2	QC 101	HindIII 295-21-S-1	0.98		ш		
Γ	295-21-S-3	QC 101	HindIII 295-19-S-1	0.95				
Γ	295-21-S-4	QC 101	HindIII 295-21-S-1	0.97				
Γ	295-21-S-5	QC 101	HindIII 295-21-S-1	0.97				
Γ	295-21-S-6	QC 101	HindIII 295-21-S-1	0.96				
Γ	295-21-S-7	QC 101	HindIII 295-21-S-1	0.93		111		
	295-21-S-8	QC 101	HindIII 295-21-S-1	0.94				

Texas *E. coli* BST Library (8-10)

